
EM WAVES

Displacement Current

Displacement current results due to change in Electric field

Charge on capacitor at any time t

$$q = CV \left[1 - e^{-t}/RC \right]$$

Conduction Current

$$I_{e} = \frac{dq}{dt} = \frac{V}{R}e^{-t}/_{RC}$$

Electric field varying with time b/w the plates of capacitor

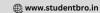
$$\overrightarrow{E_E} = \frac{CVe^{-t}/RC}{\pi R_0^2 \epsilon_0}$$

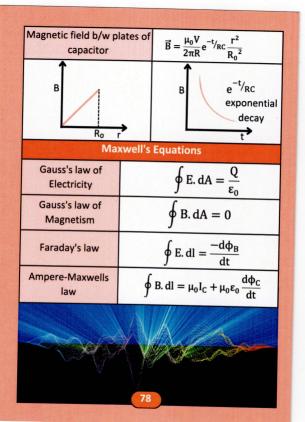
Flux at A if cylinder is drawn at surface

$$\varphi_E = \frac{CVr^2}{\epsilon_0 R_0^2} \left[1 - e^{-t}/RC \right]$$

Charge between plates of capacitor

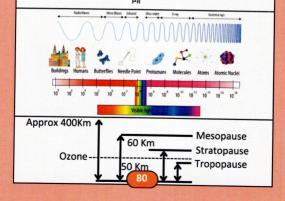
$$q_E = \epsilon_0 \left[\frac{CVr^2}{\epsilon_0 R_0^2} \left[1 - e^{-t} /_{RC} \right] \right]$$

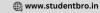

Displacement Current


$$I_{dis} = \frac{V}{R} \left[1 - e^{-t/_{RC}} \right] \left[\frac{r^2}{R_0^2} \right]$$

 $I_{\rm d} = \varepsilon_0 \left(\frac{{\rm d} \varphi_{\rm E}}{{\rm d} t} \right)$

77


EM Waves		
$y = A\sin(Kx \pm \omega t)$	У	Displacement of particles
	Α	Amplitude
$2\pi\omega = \frac{2\pi}{T}$	x	Direction of propagation of wave
$V_{max} = \frac{W}{K}$	ώ	Angular frequency
	k	Wave No = $\frac{2\pi}{\lambda}$
Speed		
In vaccum		In medium
$C_{vaccum} = \frac{1}{\sqrt{\mu_0 \epsilon_0}}$		$C_{medium} = \frac{1}{\sqrt{\mu_m \varepsilon_m}}$
$v = \frac{1}{\sqrt{\varepsilon_r \varepsilon_0 \mu_r \mu_0}}$		
Refractive Index		Poynting Vector
$\frac{C}{V} = \sqrt{\epsilon_r \mu_r}$		$\vec{S} = \frac{1}{\mu_0} (\vec{E} \times \vec{B})$
Intensity		
$\vec{I} = \frac{\text{Power}}{\text{Area of Wave front}}$		$\vec{I} = \frac{1}{2} \varepsilon_0 E_0^2 C \qquad \vec{I} = \frac{B_0^2}{2\mu_0} C$



Energy Densities of EM Waves

$$\begin{array}{c|c} \mu_E = \frac{1}{2} \epsilon_0 E^2 & \mu_B = \frac{B^2}{2\mu_0} \\ <\mu_E > = \frac{1}{4} \epsilon_0 E_0^2 & <\mu_B > = \frac{B^2}{4\mu_0} \\ = \frac{1}{2} E_0 E_{rms}^2 & = \frac{B_{rms}^2}{2\mu_0} \\ \\ \mu_T = \frac{1}{2} \epsilon_0 E_0^2 & \mu_T = \frac{B_0^2}{2\mu_0} \end{array}$$

Energy of EM waves is equally distributed in electric field $\frac{\mu_E}{E} = 1$

